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In designing and applying new structural materials, one often encounters the problem of predicting and 
taking into account nonlinear strains caused by reversible martensitic transformations. These transformations 
proceed by cooperative motion of atoms and give rise to a wide range of peculiar phenomena (superelasticity, 
shape memory effect, transformation elasticity, etc.), which alter radically the material properties and lead to 
new opportunities for their practical use. Thus, it is obvious that we need a mathematical model that allows 
wide practical application and enables one to describe and predict the deformation behavior of polycrystals 
with allowance for the aforementioned phenomena. 

The plastic deformation model based on the synthesis of slip concepts and flow theory is rigorous, 
simple, and mathematically justified [1, 2]. Therefore, it makes sense to develop it further to describe and 
predict the deformation behavior of modern structural materials under complex temperature-force regimes of 
loading with allowance for the essential microstructural properties of the phenomena in question. The synthetic 
model is used below to describe the nonlinear reversible deformation caused by martensitic reactions of the 
first kind. 

Def ining Re la t ions  of  t he  Model .  To consider the essential properties of the phenomena at the 
microscopical level, recall some well-known principles [3]. The laws of reversible phase transitions are described 
by a diagram (Fig. 1) which is plotted in the coordinate system of the relative amount of low-temperature 
(martensite) phase ~ and effective temperature T*. In a given microvolume, q~ = 0 and #p = ~0 correspond 
to the initial and final moments of the direct reaction of transition from the high-temperature phase to the 
low-temperature one (from now on, these phases will be called anstenite and martensite, respectively). The 
points Mini and Mr, A ~  and Ai correspond to the characteristic initial and final temperatures of the direct 
and reverse reactions. The reason for introducing the concept of effective temperature (the equation for it 
will be given below) and for plotting the diagram in the above coordinate system is that the characteristic 
temperatures of the reactions are shifted under the applied loading. The effective temperature reflects the 
Clansius-Clapeiron principle [3, 4] of the influence of strength loading on the kinetics of martensitic transitions 
and ensures nondependence of the characteristic temperatures, as material parameters, on the applied loading. 

To describe the reaction kinetics in accordance with Fig. 1 we use the equality [3] 

(~ = -2b*{H (r - r H (_~b*) H [Mini - (I) (Mini - Mr) - T*] (Mini - Mr) -1 

+ g (~) H (T*) g IT* - A f  + #P (Af - -  Aini) ] (Af - A i n i )  - 1  } (1) 

(H is a Heaviside function). It was assumed that the kinetics of development of the phase reaction is essentially 
independent of the type of stress state [5]. 
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Martensitic transformation of the lattice is usually accompanied by deformation of a shear nature (in 
most cases, dilatation effects are either absent or can be ignored [5-8]). Since the phase microstrain tensor 
arising in the microvolume considered is determined by the transformation (distortion) of the crystal lattice, 
the following relationship holds for the phase microstrain parameter  [3]: 

= D13(I ), (2} 

where D13 is the shear tensor component  of the crystal lattice distortion due to the phase transition. 
Because of the shear nature of the martensitic reaction, it makes sense to use the model based on the 

concept of slipping to describe the class of phenomena in question. In the concept of slipping [9], irreversible 
deformation is due to shears in the chosen slipping systems. Likewise, in the phenomenological interpretation 
used here, the strain magni tude depends upon translation of planes in the five-dimensionM space of II'yushin 
deviators [10]. Each of the planes is put in correspondence with a definite slipping system (a normal to the 
plane and a direction in the plane). The planes are displaced under the action of the stress vector S, whose 
components are determined by the stress deviator components (here and below, we use the principles and 
notation of [2]) 

s2=T /  (s,. - s.,), & = s4 = & = (3) 

If loading is performed in a three-dimensional subspace of the aforementioned deviator space, 
determined by the vector components $1, $2, and Sa (Fig. 2), the strain is found uniquely from the 
displacement of traces of these planes in the three-dimensional subspace. We denote a normal to a plane 
in the five-dimell~ional space by N,  a normal to its trace in the three-dimensional subspace by n, and the 
angle between the normals N and n by A 

Nk = nk cos ,~, k = 1, 2, 3. (4) 

The orientation of the vector S under proportional loading in the space of the components $1, $2, 
and $3 is determined by the direction cosines n~. The orientation of the normal n is defined in a spherical 
coordinate system that  is connected with the loading vector S by means of the angles/3 and (~ (f~ is the angle 
between S and n, and ~ is the angle between the projection of n onto the plane W perpendicular to S and 
the line L of intersection of the plane W with the coordinate plane S10S2). In fact, this choice of coordinate 
angles leads to coincidence of the coordinate axes with the loading vector S and to a simpler expression for 
the direction cosines nk of the normal n in terms of the direction cosines of the loading vector n~ (due to 
invariance with respect to the angle (~) [2]. 

In the basic synthetic theory of plasticity, the action of the loading vector causes the planes in the 
deviator space move as a rigid unit  (each plane can be put  in correspondence with a point in the space of 
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the variables a,  3, and A) and thus governs the transformation of the loading surface. This surface and the 
boundaries of its transformed region can be found from the plasticity condition [2]. In the present model, the 
temperature level and the loading vector determine the region in which martensitic transition in the space of 
the angular coordinates a, 3, and X is realized. The exact boundaries of the region can be found from (l). 

When applied at the macrolevel to averaged deformations, the coordinate system in question makes it 
possible to write an expression for the strain vector components (which is constructed in the five-dimensional 
space of deviators in the same manner  as the loading vector) at the macrolevel in the form 

t 

0 

where ~ (a, fl, A) is the region in which the phase reaction occurs (0 <~ a ~< 2~r, 0 ~< fl ~ ~r, and 0 ~< A ~< ~r/2); 
f (~) is a macroanisotropic parameter. For a macroanisotropic medium, f (~) = 1/(2r2). 

Taking into account (4) and the definition of the coordinate angles, we find 

t 

4 h .o f f f f#cos2 ,  AsinfldadfldAdS. (6) = 2 r  2 cos 
oa~A 

According to the assumptions made, the above effective reaction temperature can be written in a form 
similar to [3] 

5b* = T - To D13 (S, N). (7) 
q0 

Here, q0 is the thermal effect of reaction; To is the temperature of thermodynamic equilibrium of the phases; 
the second term on the right-hand side corresponds, as in [3], to the work of microstresses on shear strain in 
the lattice. 

Using (4), the properties of the scalar product of the vectors S and N, and the definition of the angles fl 
and X, relation (7) can be rewritten as 

7;* = 7 ~ - To DxalSl cos/~ cos A. (8) 
q0 

Relations (1), (2), (6), and (8) make it possible to describe nonlinear deformation caused by reversible 
martensitic reactions of the first kind under proportional loading. 

R e a l i z a t i o n  of  t h e  M o d e l  for  t h e  Case  of I s o t h e r m a l  M a r t e n s i t e  R e a c t i o n .  The material is 
assumed to be entirely in the austenite state at T = const > Mini, with an increasing external loading applied 
to it. A region A, in which the right-hand side of (8) is negative, appears in the space specified by the angles 
a, fl, and X. In this region, T* decreases ("cooling" occurs). Under certain loading, the equality T* = Mini 
holds and a direct reaction will start. In the remaining part of the space, i.e., region B, the inequality T* > 0 
holds, i.e., "heating" occurs. The region A, in which the effective temperature decreases, is bounded by the 
angles 0 <~ a ~< 2~', 0 ~< fl <~ v/2 ,  and 0 ~< A ~ r /2 ,  and is an upper hemisphere (Fig. 3). In this region, the 
relation 

= K S  cos/3 cosXH((I)0 - (I))H(Mini - T + K S  cosf~ cosX - (I) (Mini - Mf))(Mini - Mr) - I ,  (9) 

holds, where S = IS] is the length of the vector S; K = ToDla]qo.  

From relation (9), equating the argument of the third Heaviside function to zero and taking into account 
that  (I) = 0 prior to the beginning of the martensitic transition, we determine the stress Sini at which the 
phase reaction starts (at the point f~ = 0 and X = 0): 

T - Mini 
S i n  i - -  

K 

and find boundary angles that  determine the region in which the reaction is realized as the stress increases 
(Fig. 3a): 
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T -  Mini Si i cos81 
~ .  cos~81 = KS S ' cosAl = cos8 (10) 

According to (8) and (10), formula (6) takes the form 

c~ h -  KDlanO t 2, Bl(s) Al(B) 
27r2 a / d s / d ~  / cos28sinfld/~ / cos2AdA 

0 0 0 0 

at a = Mini - Mr. 
It is usually assumed that  r = 1. We set (I)0 = 2, because in the case of high-temperature (austenite) 

superelasticity, martensite crystals which have appeared in the subregion in which the reaction proceeds can 
grow into the subregion B, in which this reaction is prohibited [3]. In accordance with relation (9) and the 
requirement of (I)0 = 2, we define the stress So at which the reaction in the point region (8 = 0 and A = 0) 
terminates; So = (T-2Min i  + Mf)/K. The boundary angles characterizing the internal boundary of the region 
in which the reaction proceeds with a further increase in stress (Fig. 3b) is written as 

T - 2Mini + Mf So cos 82 
cos 82 = KS = -~-, cos A2 - cos-----ft" 

It the averaging, integration is performed over the indicated region of realization of the reaction. Thus, 
two regions appear on the hemisphere: region I, defined by the angles 81 and 82, in which the inequalities 
0 < �9 < 2 hold, and region II, defined by the angle 82, in which ~ = 2 and the direct reaction has completed. 

For S > So, the increment of the phase deformation is given by the formula 

cPkh -- KD13n~ S [arccos ( ~ )  - arccos ( ~ ) ]  + 2 ( ~ - 9 f ~  - S02 - ~ / S  2 - S2ni) 

Sini- S~nil- S2~ So "~ " 

The strain vector and strain deviator components are related by formulas similar to (3). The total 
phase strain (for pure shear and uniaxial tension, respectively) is exz = Dls/(~rx/3), ~ = 2Dls/(3zr). 

If we begin to decrease the applied loading after the magnitude S = S m  is reached, "heating" will occur 
in the same region of the coordinate space A, according to (5). When the effective temperature corresponding 
to the onset of the reverse reaction is reached, reverse transformation of loaded martensite into austenite 
occurs, which is accompanied by the vanishing of strain. 

The reverse reaction starts along the line fl = 82 [at S = S m  (T - Ain i "q- 2 (Af - Aini))/(KSo)], and 
then its region of realization extends up over the region in which the direct reaction has already ceased and 
(I) = 2 and down over the region in which 0 < ~ < 2. The reverse reaction will cover the entire region II (will 

450 



o', MPa 

1200 

800 

400 

2 0", MPa 

- - "  I 1200 

"//~'~/~ 8o0! 

4 0 0  
/ / 

/ /  / 
/ 

/ 
/ I I I I = I I 

0.004 0.008 0.012 • 0 

2 

/ I /  

/~1 / i x / ' "  

f / / 
/ / 

t / 
t ,,,/ 

�9 . i I | I | 

0.004 0.008 0.012 g 

Fig. 4 Fig. 5 

reach its upper point/3 = 0) for S = (T - Aini + 2 (At - Aira))/K and reach the lower boundary of region I 
specified by the line/3 =/31 for S = Sm (T - Af)/(KSini). Termination of the reverse transformation (because 
of its complete transition to austenite ) begins from the line/3 =/31 and ceases completely for S = (7 ~ -  Af)/K. 
Expressions for the boundary angles and strain after loading have a form similar to the corresponding formulas 
during loading. 

R e d u c t i o n  of  C o n s t i t u t i v e  Re la t i ons  of the  M o d e l  to t he  Re la t ions  of  D e f o r m a t i o n  Theory .  
Formula (6) can be written as 

e~ h =n~ (11) 

Bearing in mind that the relation ~ h  = (V~/2)vph (where ~/ph is the intensity of shear strain 
caused by the phase reactions) holds for the phase strain component, we obtain 3, ph = (2vf2/3)F(S). 

Taking into account that S = ( 3 / v ~ ) r  (r  is the tangential stress intensity), we recast formula (11) as 
= 

Adding elastic strain components and moving from the vector components to the deviator components, 
we write e i j =  Sii](2G' (r)),  G' (r) = 7Ph/r + 1/G (G is the elastic shear modulus). 

Thus, under the above assumptions, the constitutive relations of the model become analogous to the 
relations in the deformation theory of plasticity [11]. 

The universal relation between r and ~,ph is written as 

~/= G + 9~r (Mini - Mr) S arccos - arccos 

"q- [S3ni In I "q + "~/'2 - "ff2ni,-q' I-- '031hi ' + V/~- - $21 ] / ~ 3  + 2 ['~ - ' 2  - "qini�89 - S2ni ] } S 0  

where ~/is the shear strain intensity. 
C o m p a r i s o n  w i th  E x p e r i m e n t .  Calculations were conducted for iron-nickel alloys with the 

reversible c~ ~- 7 transformation. Figures 4-7 show results of the calculations of the cr - -  r diagrams 
under uniaxial tension (deflection of a plastic sample loaded by the three-point bending scheme) and under 
unloading for Ni295ColSTi6Fe alloy at various holding temperatures: T = 293,273, 263, and 243 K (Figs. 4-7, 
respectively). In accordance with the data of [12], the characteristic temperatures were as follows Mini = 225 K, 
Mf = 150 K, Aini -- 162 K, and A t = 237 K. In the calculations, we used To = 160 and K = 0.173. 

As follows from the figures, there is good qualitative and quantitative agreement between the calculated 
results (curves 1) and experimental results (curves 2 [12]). 
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Conclusion.  The concept of slipping can be used in designing modern phenomenological models for 
the nonlinear deformation of polycrystals of various nature. 

Among the approaches based on the concept of slipping, the synthetic approach is one of the most 
effective and mathematically justified. 

The proposed synthetic model of phase deformation was used to describe a reversible isothermal 
martensitic reaction. The process of accumulation and recovery of strain under loading and unloading 
was described. Allowance for the microstructural peculiarities of martensitic transformations leads to 
understanding of macroscopic regularities in the deformation behavior of polycrystals. Use of the above 
averaging method enables one to describe analytically reversible changes in material properties for various 
types of stressed states. A universal relationship between the tangential stress and shear strain intensities 
is derived. The constitutive relations of the model are brought to a form analogous to the relations of the 
deformation theory of plasticity. Good qualitative agreement with the experimental data was obtained. 

In addition to the transition considered, phase reactions of the first kind under different strength and 
thermal conditions can be described within the framework of this model. 

R E F E R E N C E S  

1 .  

2. 

. 

4. 

. 

6. 

7. 

K. N. Rusinko, "Modern problems in the theory of creep and plasticity," Tech. News, No. 1(2, 3), 
69-72 (1994). 
Ya. F. Andrusik and K. N. Rusinko, "Plastic deformation of strengthening materials under loading 
in a three-dimensional subspace of five-dimensional deviator space," Izv. Ross. Akad. Nauk, Mekh. 
Tverd. Tela, No. 2, 92-101 (1993). 
V. A. Likhachev and V. G. Malinin, Structural and Analytical Theory of Strength [in Russian], Nauka, 
St. Petersburg (1993). 
J. Perkins, "Shape memory effects associated with strain reversible martensitic deformation: 
correlation of structural features and mechanical behavior," in: Martensitic Transformations [Russian 
translation], Naukova Dumka, Kiev (1978), pp. 160-165. 
V. A. Likhachev, S. L. Kuz'min, and Z. P. Kamentseva, Shape Memory Effect [in Russian], Leningr. 
Univ., Leningrad (1987). 
V. S. Boiko, R. [. Garber, and A. M. Kosevich, Reversible Plasticity of Crystals [in Russian], Nauka, 
Moscow (1991). 
Shape Memory Effect in Alloys [in Russian], Metallurgiya, Moscow (1979). 

452 



o 

9. 

10. 
11. 
12. 

L. G. Handros, "On the nature of superelasticity and shape memory effects," in: Martensitic 
Transformations [Russian translation], Naukova Dumka, Kiev (1978), pp. 146-150. 
S. B. Batdorf and B. V. Budyanskii, "Mathematical theory of plasticity based on the concept of 
slipping," in: Mechanics, No. 1, 135-155 (1962). 
A. A. II'yushin, Theory of Plasticity [in Russian], Nauka, Moscow (1963). 
A. Nadai, Plasticity and Failure of Solids [Russian translation], Izd. Inostr. Lit., Moscow (1954). 
V. V. Kokorin, "Thermoelastic martensite in Fe--Ni based alloys," in: Phase Transformations of 
Martensite Type [in Russian], Naukova Dumka (1993), pp. 179-187. 

453 


